skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jaeger, Heinrich"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Acoustic levitation in air provides a containerless, gravity-free platform for investigating driven many-particle systems with nonconservative interactions and underdamped dynamics. In prior work the interactions among levitated particles were limited to attractive forces from scattered sound and repulsion from hydrodynamic microstreaming. We report on experiments in which contact cohesion provides a third type of interaction. When particle size and separation are both much smaller than the sound wavelength, this interplay of three interactions results in forces that are attractive over several particle diameters, become repulsive at close approach, and are again attractive at contact. In the presence of sound-induced athermal fluctuations that generate particle collisions, the interplay of these three forces enables the formation of particle chains with anisotropic interactions that depend on chain size and shape due to multibody effects. With the control of the kinetic pathways and the strength of the contact cohesion, different patterns can be assembled, from triangular lattices to labyrinthine patterns of chains to lacelike networks of interconnected rings. These results shed light on the multibody character of acoustic interactions and can be utilized to direct the self-assembly of particles. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Dynamic compression of elastic foam filled with non-Newtonian fluid can be rationalized by fluid rheology and foam pore size distribution. 
    more » « less
    Free, publicly-accessible full text available February 5, 2026
  3. Free, publicly-accessible full text available February 1, 2026
  4. A new paradigm for generating adaptive functionality in materials. 
    more » « less
  5. Acoustic levitation is frequently used for non-contact manipulation of objects and to study the impact of microgravity on physical and biological processes. While the force field produced by sound pressure lifts particles against gravity (primary acoustic force), multiple levitating objects in the same acoustic cavity interact via forces that arise from scattered sound (secondary acoustic forces). Current experimental techniques for obtaining these force fields are not well-suited for mapping the primary force field at high spatial resolution and cannot directly measure the secondary scattering force. Here, we introduce a method that can measure both acoustic forces in situ, including secondary forces in the near-field limit between arbitrarily shaped, closely spaced objects. Operating similarly to an atomic force microscope, the method inserts into the acoustic cavity a suitably shaped probe tip at the end of a long, flexible cantilever and optically detects its deflection. This makes it possible to measure forces with a resolution better than 50 nN and also to apply stress or strain in a controlled manner to manipulate levitated objects. We demonstrate this by extracting the acoustic potential present in a levitation cavity, directly measuring the acoustic scattering force between two objects, and applying tension to a levitated granular raft of acoustically bound particles in order to obtain the force–displacement curve for its deformation. 
    more » « less
  6. Dynamic covalent bonds in suspensions serve as effective friction, leading to shear-thickening behavior. This behavior is similar to that of physically contacting particles but shows a distinct dependence on particle size. 
    more » « less
  7. Abstract Auxetic materials have a negative Poisson’s ratio and are of significant interest in applications that include impact mitigation, membrane separations and biomedical engineering. While there are numerous examples of structured materials that exhibit auxetic behavior, the examples of engineered auxetic structures is largely limited to periodic lattice structures that are limited to directional or anisotropic auxetic response. Structures that exhibit a three-dimensionally isotropic auxetic response have been, unfortunately, slow to evolve. Here we introduce an inverse design algorithm based on global node optimization to design three-dimensional auxetic metamaterial structures from disordered networks. After specifying the target Poisson’s ratio for a structure, an inverse design algorithm is used to adjust the positions of all nodes in a disordered network structure until the desired mechanical response is achieved. The proposed algorithm allows independent control of shear and bulk moduli, while preserving the density and connectivity of the networks. When the angle bending stiffness in the network is kept low, it is possible to realize optimized structures with a Poisson’s ratios as low as −0.6. During the optimization, the bulk modulus of these networks decreases by almost two orders of magnitude, but the shear modulus remains largely unaltered. The materials designed in this manner are fabricated by dual-material 3D-printing, and are found to exhibit the mechanical responses that were originally encoded in the computational design engine. The approach proposed here provides a materials-by-design platform that could be extended for engineering of optical, acoustic, and electrical properties, beyond the design of auxetic metamaterials. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  8. Abstract Sound can exert forces on objects of any material and shape. This has made the contactless manipulation of objects by intense ultrasound a fascinating area of research with wide-ranging applications. While much is understood for acoustic forcing of individual objects, sound-mediated interactions among multiple objects at close range gives rise to a rich set of structures and dynamics that are less explored and have been emerging as a frontier for research. We introduce the basic mechanisms giving rise to sound-mediated interactions among rigid as well as deformable particles, focusing on the regime where the particles’ size and spacing are much smaller than the sound wavelength. The interplay of secondary acoustic scattering, Bjerknes forces, and micro-streaming is discussed and the role of particle shape is highlighted. Furthermore, we present recent advances in characterizing non-conservative and non-pairwise additive contributions to the particle interactions, along with instabilities and active fluctuations. These excitations emerge at sufficiently strong sound energy density and can act as an effective temperature in otherwise athermal systems. 
    more » « less
  9. Designing robotic systems that can change their physical form factor as well as their compliance to adapt to environmental constraints remains a major conceptual and technical challenge. To address this, we introduce the Granulobot, a modular system that blurs the distinction between soft, modular, and swarm robotics. The system consists of gear-like units that each contain a single actuator such that units can self-assemble into larger, granular aggregates using magnetic coupling. These aggregates can reconfigure dynamically and also split into subsystems that might later recombine. Aggregates can self-organize into collective states with solid- and liquid-like properties, thus displaying widely differing compliance. These states can be perturbed locally via actuators or externally via mechanical feedback from the environment to produce adaptive shape-shifting in a decentralized manner. This, in turn, can generate locomotion strategies adapted to different conditions. Aggregates can move over obstacles without using external sensors or coordinates to maintain a steady gait over different surfaces without electronic communication among units. The modular design highlights a physical, morphological form of control that advances the development of resilient robotic systems with the ability to morph and adapt to different functions and conditions. 
    more » « less
  10. Weitz, David (Ed.)
    A hallmark of concentrated suspensions is non-Newtonian behavior, whereby the viscosity increases dramatically once a characteristic shear rate or stress is exceeded. Such strong shear thickening is thought to originate from a network of frictional particle–particle contact forces, which forms under sufficiently large stress, evolves dynamically, and adapts to changing loads. While there is much evidence from simulations for the emergence of this network during shear thickening, experimental confirmation has been difficult. Here, we use suspensions of piezoelectric nanoparticles and exploit the strong local stress focusing within the network to activate charge generation. This charging can then be detected in the measured ac conductance and serve as a signature of frictional contact formation. The direct link between stress-activated frictional particle interactions and piezoelectric suspension response is further demonstrated by tracking the emergence of structural memory in the contact network under oscillatory shear and by showing how stress-activated friction can drive mechano-transduction of chemical reactions with nonlinear reaction kinetics. Taken together, this makes the ac conductance of piezoelectric suspensions a sensitive in-situ reporter of the micromechanics associated with frictional interactions. 
    more » « less